SUNDAY, JULY 6, 2014 AT 10:48

BRBE

HEN—ENE, BEMENEERD, —EB&XER"Person of
Interest”, XE—HEIAHMERI, FHNEEERRISMH. EXH
HX AW TIEFRMNEE, they call programmer as code monkey!
X—EAMBERBEEMSEE, BRREEBRFEINTHAZRBAMIN,
BARMENEILZH, MAIRPF2RER, AE3RFLELHNE, BE
XFMARIMESY, MEFFFE—LPRMEE,

FRUARY (B & HER B E TR -

7:30 Get Up

I
8:30 Go and Work

I
11:10 Lunch

I
12:00 Siesta

I
13:15 Get Up

I
14:30 Go and Work

I
17:10 Dinner

I
18:00 Break

I
19:00 Work

I
21:30 Go Back & Trivia

I
22:30 Self-Study

I
00:00 Sleep

MMPLHR R SR, M, 14, FE 26° MOSTLY CLOUDY

WEDNESDAY, JULY 23, 2014 AT 13:20

about the c++ coding summary

this time when | was previewing the cpp programming, | learned to
use the point-to-function so that the other function could use the
function name as a parameter, for instance:

void dis (double);//prototype dis
void dis2 (double) ;//prototype dis2
double calculate (double,void

dis (double));//calling function

int main ()

void (*pf[2]) (double);//declare the point-
to-function
pf[0]=dis;
pfll]l=dis2;
for (int i=0;1<2;i++)
{
calculate(1.22,pf[i]);

PETHERMEEEXEEE, M, 'IH4&, FE e« 36° PARTLY CLOUDY

WEDNESDAY, JULY 23, 2014 AT 17:02

about the 1/0&judgement summary

(1) 110
cH+:
cin
cout
cin:
a).character input:
char l;
cin>>[;//cin class can input the char type directly
b).string input:

char *Str=new char[size];
cin>>Str;//input the string, but can’t get
in blank-space from keyboard with the method cin

delete [] Str;//after the operation, never
forget the delete method to release the memory

e.qg
$>Alistair Dreeb

when you output the string, it only display the “Alistair” rather than
“Alistair Dreeb” for it including the blank-space, the same with Tab
and line-break(\t,\n) which are used as symbol of the end of the

string in ‘cin’.

Todo

to solve this problem, we could use several ideas.

1. cin.getline(const char *,int)

this function read a line per time, and this function does not leave
the "\O’ in the stream

2. cin.get(const char *,int)

this function almost do the same as ‘getline’, but the only different is
that it will leave the \O" in the stream

e.g.

cin.get(strname,size);

cin.get(strname,size);//error for it inputing nothing as the first read
was "\0’

fixed
cin.get(strname,size);
cin.get();//read newline;
cin.get(strname2,size);

int year;

cin>>year;

char *strname=new char[89];

cin.getline (strname,89);//error! cin>>year
then hit the ENTER and leave the ‘\n’ in the
stream that lead to a cin.getline() error.

fixed

int year;

cin>>year;

cin.get ();//read newline to get rid of the
\\nl

char *strname=new char[89];

cin.getline (strname, 89);

HETHEFMEEXEERE, FMT, 154, FE 36° PARTLY CLOUDY

THURSDAY, JULY 24, 2014 AT 15:42

c).input the string and estimate to jump out of
the circle

NO.1
when input one special character, jump out the loop.

char a;

cin>>a;

while ('g’ !=a)

{
cout<<“enter the character:”<<endl;
cin>>a

}

e.g.

enter the character:
see ken rungreally room

cin ignore the Space&Tab, which means there only 9 characters been
counted.

TODO
to solve this, cin.get() can be used even the entered character was
Space.

char a;

cin.get (ch);

while ('g’ !'=a)

{
cout<<“enter the character:”<<endl;
cin.get (ch);

NO.2

EOF(end of file) will set two bits, failbit and eofbit.

using function cin.eof() return bool type to ensure the end of file
using function cin.fail() return bool type to ensure the input type

e.g.
char ch;
cin.get (ch);
while (cin.fail ()==false)//verify the cin was
right and don’t get end of file

{
cin.get (ch);
}

NO.3
the much more useful idea about test the entered character
while(cin.get(ch))

FEIHE R M EIEXEESE, ZM, 154, FE 32°CLOUDY

SUNDAY, JULY 27, 2014 AT 17:47

default parameters of function and string
assignment

(1) default parameters of function
assign the parameter of function in prototype as the default
parameter value.

e.g.

void foo(const char * str,double x=3.14,1int
u=2);//function prototype where we can assign
the default value of the function parameter
int main ()

void foo(const char *str,double x,int
u) //function definition

why the default parameter must be assigned in the declaration?

NO.1 the difference between function declaration and function
definition

1).function declaration just tell the compiler that there is a function
including some parameter which will be called

2).function definition will allocate details of the function method in
the memory.

NO.2 actually we can assign the default parameter in both of
declaration and definition, but that cause ambiguity. so the ANSCI
recommend that assign in declaration.

NO.3 the default parameters should be located from right to left.

(2) string assignment
there is no better idea than strcp() for now.

FETHEFMbEZIEXEER, M, 17 &, FIE e 24° SHOWERS

MONDAY, JULY 28, 2014 AT 18:28

string 1/0 and member function of class string

string I/O is almost the same as type char, just use cin>>(string)...
but when we should include the blank-space into the string object
with cin, something special changed.

e.g.
string str;
getline(cin, str);
>$ go away
>Secho str

>$go away

class string
the definition was included in the file
meanwhile the method operat with the string object was included in

the file string.h(old-c standard),now we use cstring file

e.g.

#include <string> //make the class string
available

#include <cstring> //make the method operate
with string object available

using std::string //to available the
class, we must ensure the scope std

some methods:

lenghth() //return the integer about the string character’s numbers,
including the \0’

size() //the same with the method length(), except for it does not
including the member "\0’

c_str() //return the char * type(transform the string into char)

HRETH &R MTTZIEX EEE, M, JIH&, FE 30° MOSTLY SUNNY

FRIDAY, AUGUST 1, 2014 AT 21:20

function reload and function template

technically, template function serves for function reload.
first of all, let us know the compiler’s work about how to recognize
which function the code hoping to call.

(1)create the candidate function list that contains all the function and
template function which have the same function name being called.

(2)create the feasible function list that contains the function whose
parameters are absolutely matched.

(3)check if the function calling is all right.

after the match operate, the compiler will judge the function
signature is fully-matched or promote-transformation or standard-
transformation or custom-transformation.

NOTE:
priority of the function matching

#1 conventional function
#2 explicit specialization of template function
#3 conventional template function

FIHTAEE 385, M, #iI&, HE o 27° MOSTLY CLOUDY

FRIDAY, AUGUST 1, 2014 AT 23:20

C++F Anewn)SRIE — HEARNBR —HREIX4F:

TYPE (* p)IN] = new TYPE [J[N];

Heh, TYPEREMER, NEITHHAMNIIE, RAXMER, JIE
WNRFEE, MITHEREE. EXE, plEEZETYPEXN], BIZiEM
— P ENFTEHEANIEH .

BE—ME, FIURIEERANTIE:

int* *p;

p = new int *[10]; /A&, int *(10IRT—TE 10N TTRIVIEH A
for(inti=0;i!=10; ++i)

{

pli] = new int[5];

1

XERBpEA— 1 1E@igfaviEsH, EERA—TEE107TRENIEE
WA, HESTTRE@A—1BSTITRENNA, XEMBEET—110
1T5FIRIEAE.

SHMAFATE, BRZENABEE:

for(inti=0;i!=5; i++)

{

delete[] plil;

}

deletel] p;

QIR T HEENAE, TIDABMRHETE YA,

FR4EE R — (IR RIZESZ A, B 4o RaVE it &a[0][01fF
NS, EBLRE, REAint 2%,
THEMBERA T HRNANRES, BEREERTEIIN.

MMPLHER R SR, M, 14, FE e 27° MOSTLY CLOUDY

MONDAY, AUGUST 11, 2014 AT 21:18

the procedure of program compiling

1 —>source code

2 —>compile preprocess

3 —>compile the code itself

4 —>optimize the code

5 —>assemble the code

6 —>link the program

7 —>generate the executable file

2 replace all the preprocess key word with the file or variable.
for instance, #define #undef
#include

#itdef #ifndef #else #elif #endif

LINE FILE (special word)

3 there only are key words, constant variable,variable and so on after
preprocess. compiling the code itself just check the correct of the
lexical, syntax according to the rules. And then generate the
intermediate code.

4 the place where the optimization happens is uncertain. Totally, the
compiler will optimize the intermediate code and the object code.
on intermediate code, it will delete the public expression, optimize
the loops, delete the unused assignment and so on.

on object code, it will decrease the volume of visit of the register
and, meanwhile, adapt the code into the shortest one.

5 assembly process will translate the assembly code into machine
code and get the object code. the object code include three types,
relocatable file, share file, executable file. the assembly process will
get the relocatable file.

6 link program process will solve the problem of object code file,
which needs to call other source code or library, can not be
executed. there are two ways having it solved, the first one is that
called runtime link and the other called static link.

source code—-[compile $2-S3-54-S5]—->object file—-[link S6]—-
>executable

I

I

\/

* .obj for Win

* .o for Unix

package the .obj files into library file for Win

package the .o files into archive file for Unix

MG N = ZREX, i, #ii1&, FE o 27° MOSTLY CLEAR

TUESDAY, AUGUST 12, 2014 AT 22:15

placement new

1.2 85]F

#include

#include

const intchunk = 16;
class Foo

{

public :

int val() { return _val; }
Foo(){_val =0;}

private :
int_val;
L
/D ERARE, BRBFooXIHR

char*buf = new char| sizeof(Foo) * chunk |;

int

main(void)

{

//TEbUfRBIE— T FooXt R

Foo*pb = new (buf) Foo;

/IHE— T NRESHBMTEbUfF

if (pb->val() ==0)

{

cout <<”new expressio worked!” <<end|;

1

/1EIX B EEER{ERpb

delete[] buf;

return O;

}

BEARTBEM EfnewR AR "B F—REAnewl I RETA? E
B ALE—RREInew I REE 2% !

2 (FAE M newRIARER

1) placement newtIfERZ: BIBNREZADERTF, MEED
BNAFRLENENSR., ATHEERE SIZHBIRNNRLE, TN
R D BEC BN A FAMEE .

2) EfinewRIAT (placement new expression, C++ primer

P347) , AFRERABENREIBECLWEDEFNAEFEDR, newRY
AR AT

new (place_address) type
new (palce_address) type (initializer-list)

place_addressihJE MEE, EEEZDRFNAT. AT ERXH
R BInewRAR, DABEXNH.

EfnewRIAN T BEiHAdeleteflff placement newhIX R, TEA
REVERANRTARE, FEARNERESBENRE.
#include

#include

using namespace std;
const int chunk = 16;

class Foo

{

public:

int val(){return _val;}
Foo(){ _val=0;}
private:

int _val;

|3

int main()
{
/1 i BEEAFEbuf

char *buf = new char[sizeof(Foo) * chunk];

/] FEbUfR IR — T FooXI &R

Foo *pb=new (buf) Foo;
/I E—THRESHE M AELUH

if(pb->val()==0) cout<<”new expression worked!"”<<endl;

// 5227[—@7_'5Eﬁnew?ﬁiﬁﬁ@ﬁﬂﬂ’ﬂdelete%ﬁiﬁ, Bl: delete pb,
/\ZEjjT

// %;ESZV\]T?E’]W»E, BIAFTEXIHNRAR, EATE[InewRIARFH
PEATE,

// ﬁﬂ%?’" MR E P B — L HAMRIREIR? MEERBBTER

.

/] SRRFABEEbUY, buffiE@MINEHEBIFR, EREEEEXT

FRIVAE A EAtL R

/] EBEERT

deletel] buf;

return O;

}
TEfiInewFRIXHIN A :

EBENRERD, BREAmallocANROETIE, AEEEEInew
RIAENREBEC LKW O RIFNAFESR, STHAEREAIER,
3)

“new (start) Screen;”

X2 EnewiR{E

Screen *ps = new (start) Screen;
RNECEFRFFHAEFEX start R A IR Screen BIE— N HTE

B EiR, WRstarts1 0 0 PNFEF

RUEMNENSE 1 MFHHE, FEES AScreen

REMS EERBRAFNMRE MG, WRScreenBEBIEEH, HIT
F¥7=(8), FLdelete psRRATIHR 2, AMERRIETHTEMS
MAEZ B EER T AN RADEMNAEZ(E, FrlistartPRIFBER
NEFEHMEKRT, ERpstiigm T start FAIAE R G IXFFIER, MESps-
>~Screen()iX#t 2 AIIAAScreenfUIT R EL, HBdelete [Jstart,

MG RN = ZREX, i, #i71&, FE e 23° MIST AND FOG

FRIDAY, AUGUST 22, 2014 AT 23:43

char * initialization

C's rules for string literals are different from C++'s rules. In C, a
string literal is an array of char, not an array of const char* — but
attempting to modify it has undefined behavior. This means that in C
you can legally write char *s = "hello”; s[0] = 'H';, and the compiler
won't necessarily complain — but the program is likely to die with a
segmentation fault when you run it. This was done to maintain
backward compatibility with C code written before the const
keyword was introduced. C++ had const from the very beginning, so
this particular compromise wasn't necessary.

30.2681° N, 120.118°E ¢ 27° MOSTLY CLEAR

MONDAY, AUGUST 25, 2014 AT 23:29

Templates and Template Classes in C++
(coding/C++/chapter10/8.cpp#t8.h#t8.cpp)

What's better than having several classes that do the same thing to
different datatypes? One class that lets you choose which datatype it
acts on.

Templates are a way of making your classes more abstract by letting
you define the behavior of the class without actually knowing what
datatype will be handled by the operations of the class. In essence,
this is what is known as generic programming; this term is a useful
way to think about templates because it helps remind the
programmer that a templated class does not depend on the
datatype (or types) it deals with. To a large degree, a templated class
is more focused on the algorithmic thought rather than the specific
nuances of a single datatype. Templates can be used in conjunction
with abstract datatypes in order to allow them to handle any type of
data. For example, you could make a templated stack class that can
handle a stack of any datatype, rather than having to create a stack
class for every different datatype for which you want the stack to
function. The ability to have a single class that can handle several
different datatypes means the code is easier to maintain, and it
makes classes more reusable.The basic syntax for declaring a
templated class is as follows:

template <class a type> class a class {...};

The keyword 'class' above simply means that the identifier a_type
will stand for a datatype. NB: a_type is not a keyword; it is an
identifier that during the execution of the program will represent a
single datatype. For example, you could, when defining variables in

the class, use the following line:
a_type a_var;

and when the programmer defines which datatype 'a_type' is to be
when the program instantiates a particular instance of a_class, a_var
will be of that type. When defining a function as a member of a
templated class, it is necessary to define it as a templated function:

template<class a_type> void
a class<a_type>::a function(){...}

When declaring an instance of a templated class, the syntax is as
follows:

a class<int> an example class;

An instantiated object of a templated class is called a specialization;
the term specialization is useful to remember because it reminds us
that the original class is a generic class, whereas a specific
instantiation of a class is specialized for a single datatype (although it
is possible to template multiple types). Usually when writing code it
is easiest to precede from concrete to abstract; therefore, it is easier
to write a class for a specific datatype and then proceed to a
templated - generic - class. For that brevity is the soul of wit, this
example will be brief and therefore of little practical application. We
will define the first class to act only on integers.

class calc

{
public:
int multiply(int x, int vy);
int add(int x, int vy);

int calc::multiply(int x, int vy)
return x*y;
int calc::add(int x, int y)

return x+y;

We now have a perfectly harmless little class that functions perfectly
well for integers; but what if we decided we wanted a generic class
that would work equally well for floating point numbers? We would
use a template.

template <class A Type> class calc

{
public:
A Type multiply (A Type x, A Type Vy);
A Type add(A Type x, A Type y);

}i

template <class A Type> A Type

calc<A Type>::multiply (A Type x,A Type y)

{

return x*y;
}
template <class A Type> A Type
calc<A Type>::add(A Type x, A Type y)
{

return x+y;

}

To understand the templated class, just think about replacing the
identifier A_Type everywhere it appears, except as part of the
template or class definition, with the keyword int. It would be the
same as the above class; now when you instantiate an object of class
calc you can choose which datatype the class will handle.

calc <double> a calc class;

Templates are handy for making your programs more generic and
allowing your code to be reused later.

MMM = E X, T, H/ L&, #FE o 27° MOSTLY CLEAR

WEDNESDAY, AUGUST 27, 2014 AT 21:45

pointer function and its
usage(coding/C++/chapter10/8.cpp#t8.h#t8.cpp)

A function pointer is a variable that stores the address of a function
that can later be called through that function pointer. This is useful
because functions encapsulate behavior. For instance, every time
you need a particular behavior such as drawing a line, instead of
writing out a bunch of code, all you need to do is call the function.
But sometimes you would like to choose different behaviors at
different times in essentially the same piece of code. Read on for
concrete examples.

Example Uses of Function Pointers

Functions as Arguments to Other Functions

If you were to write a sort routine, you might want to allow the
function's caller to choose the order in which the data is sorted;
some programmers might need to sort the data in ascending order,
others might prefer descending order while still others may want
something similar to but not quite like one of those choices. One
way to let your user specify what to do is to provide a flag as an
argument to the function, but this is inflexible; the sort function
allows only a fixed set of comparison types (e.g., ascending and
descending).

A much nicer way of allowing the user to choose how to sort the
data is simply to let the user pass in a function to the sort function.

13

This function might take two pieces of data and perform a
comparison on them. We'll look at the syntax for this in a bit.

Callback Functions

Another use for function pointers is setting up “listener” or
“callback” functions that are invoked when a particular event
happens. The function is called, and this notifies your code that
something of interest has taken place.

Why would you ever write code with callback functions? You often
see it when writing code using someone's library. One example is
when you're writing code for a graphical user interface (GUI). Most of
the time, the user will interact with a loop that allows the mouse
pointer to move and that redraws the interface. Sometimes,
however, the user will click on a button or enter text into a field.
These operations are “events” that may require a response that your
program needs to handle. How can your code know what's
happening? Using Callback functions! The user's click should cause
the interface to call a function that you wrote to handle the event.

To get a sense for when you might do this, consider what might
happen if you were using a GUI library that had a “create_button”
function. It might take the location where a button should appear on
the screen, the text of the button, and a function to call when the
button is clicked. Assuming for the moment that C (and C++) had a
generic “function pointer” type called function, this might look like
this:

void create button(int x, int y, const char
*text, function callback func);

Whenever the button is clicked, callback_func will be invoked.
Exactly what callback_func does depends on the button; this is why
allowing the create_button function to take a function pointer is
useful.

Function Pointer Syntax

The syntax for declaring a function pointer might seem messy at first,
but in most cases it's really quite straight-forward once you
understand what's going on. Let's look at a simple example:

void (*foo) (int);

In this example, foo is a pointer to a function taking one argument,
an integer, and that returns void. It's as if you're declaring a function
called "*foo”, which takes an int and returns void; now, if *foo is a
function, then foo must be a pointer to a function. (Similarly, a
declaration like int *x can be read as *x is an int, so x must be a
pointer to an int.)

The key to writing the declaration for a function pointer is that you're
just writing out the declaration of a function but with (*func_name)

where you'd normally just put func_name.

Reading Function Pointer Declarations
Sometimes people get confused when more stars are thrown in:

void * (*foo) (int *);

Here, the key is to read inside-out; notice that the innermost
element of the expression is *foo, and that otherwise it looks like a
normal function declaration. *foo should refer to a function that
returns a void * and takes an int *. Consequently, foo is a pointer to
just such a function.

Initializing Function Pointers
To initialize a function pointer, you must give it the address of a
function in your program. The syntax is like any other variable:

#include <stdio.h>
void my int func(int x)
{

printf ("$d\n", x);
}

int main ()

{
void (*foo) (int);
/* the ampersand i1s actually optional */
foo = &my int func;

return O;

(Note: all examples are written to be compatible with both C and
C++.)

Using a Function Pointer

To call the function pointed to by a function pointer, you treat the
function pointer as though it were the name of the function you wish
to call. The act of calling it performs the dereference; there's no
need to do it yourself:

#include <stdio.h>
void my int func(int x)
{

printf ("$d\n", x);
}

int main ()

{
void (*foo) (int);
foo = &my int func;

/* call my int func (note that you do not

need to write (*foo) (2)) */
foo(2);
/* but if you want to, you may */
(*foo) (2);

return 0O;

Note that function pointer syntax is flexible; it can either look like
most other uses of pointers, with & and *, or you may omit that part
of syntax. This is similar to how arrays are treated, where a bare array
decays to a pointer, but you may also prefix the array with & to
request its address.

Function Pointers in the Wild

Let's go back to the sorting example where | suggested using a
function pointer to write a generic sorting routine where the exact
order could be specified by the programmer calling the sorting
function. It turns out that the C function gsort does just that.

From the Linux man pages, we have the following declaration for
gsort (from stdlib.h):

void gsort (void *base, size t nmemb, size t
size,
int (*compar) (const void *, const void

*)) i

Note the use of void*s to allow gsort to operate on any kind of data
(in C++, you'd normally use templates for this task, but C++ also
allows the use of void* pointers) because void* pointers can point to
anything. Because we don't know the size of the individual elements
in a void* array, we must give gsort the number of elements,
nmemb, of the array to be sorted, base, in addition to the standard
requirement of giving the length, size, of the input.

But what we're really interested in is the compar argument to gsort:
it's a function pointer that takes two void *s and returns an int. This
allows anyone to specify how to sort the elements of the array base
without having to write a specialized sorting algorithm. Note, also,
that compar returns an int; the function pointed to should return -1 if
the first argument is less than the second, O if they are equal, or 1 if
the second is less than the first.

For instance, to sort an array of numbers in ascending order, we
could write code like this:

#include <stdlib.h>

int int sorter(const void *first arg, const
void *second arg)

{

int first = *(int*)first arg;
int second = *(int¥*)second arg;
if (first < second)

{

return -1;

}

else if (first == second)

16

return 0;
}
else

{

return 1;

int main ()

{

int array[10];

int 1i;

/* £i1ll array */

for (1 =0; 1 < 10; ++1i)
{

array[1] = 10 - 1i;
}
gsort (array, 10 , sizeof(int), int sorter);
for (1 = 0; 1 < 10; ++1)
{
printf ("%d\n" ,array[1]);

Using Polymorphism and Virtual Functions Instead of Function
Pointers (C++)

You can often avoid the need for explicit function pointers by using
virtual functions. For instance, you could write a sorting routine that
takes a pointer to a class that provides a virtual function called
compare:

class Sorter

{

public:

virtual int compare (const void *first, const
void *second);

b

// cpp_gsort, a gsort using C++ features like
virtual functions

void cpp gsort(void *base, size t nmemb, size t
size, Sorter *compar);

inside cpp_gsort, whenever a comparison is needed, compar-
>compare should be called. For classes that override this virtual
function, the sort routine will get the new behavior of that function.
For instance:

class AscendSorter : public Sorter

{

virtual int compare (const void*, const void¥*)

{

int first = *(int*)first arg;
int second = *(int*)second arg;
if (first < second)

{

return -1;

}

else if (first == second)
{

return 0O;

}

else

{

return 1;
}
}
}i

and then you could pass in a pointer to an instance of the
AscendSorter to cpp_gsort to sort integers in ascending order.

But Are You Really Not Using Function Pointers?

Virtual functions are implemented behind the scenes using function
pointers, so you really are using function pointers-it just happens
that the compiler makes the work easier for you. Using
polymorphism can be an appropriate strategy (for instance, it's used
by Java), but it does lead to the overhead of having to create an
object rather than simply pass in a function pointer.

Function Pointers Summary

Syntax

Declaring

Declare a function pointer as though you were declaring a function,
except with a name like *foo instead of just foo:

void (*foo) (int);

Initializing
You can get the address of a function simply by naming it:

void foo();
func pointer = foo;

or by prefixing the name of the function with an ampersand:

void foo();
func pointer = &foo;

Invoking
Invoke the function pointed to just as if you were calling a function.

func pointer(argl, arg2);

or you may optionally dereference the function pointer before calling
the function it points to:

(*func_pointer) (argl, arg2);

Benefits of Function Pointers
1, Function pointers provide a way of passing around instructions

for how to do something

2, You can write flexible functions and libraries that allow the
programmer to choose behavior by passing function pointers as
arguments

3, This flexibility can also be achieved by using classes with virtual
function

HMBTHN = S, M, HI4E, FE o 26° MOSTLY CLOUDY

WEDNESDAY, SEPTEMBER 3, 2014 AT 23:23

operator overloading in c++

In C++ the overloading principle applies not only to functions, but
to operators too. That is, of operators can be extended to work not
just with built-in types but also classes. A programmer can provide
his or her own operator to a class by overloading the built-in
operator to perform some specific computation when the operator is
used on objects of that class. Is operator overloading really useful in
real world implementations? It certainlly can be, making it very easy
to write code that feels natural (we'll see some examples soon). On
the other hand, operator overloading, like any advanced C++
feature, makes the language more complicated. In addition,
operators tend to have very specific meaning, and most
programmers don't expect operators to do a lot of work, so
overloading operators can be abused to make code unreadable. But
we won't do that.

An Example of Operator Overloading

Complex a(l1.2,1.3); //this class is used to
represent complex numbers
Complex b(2.1,3); //notice the

construction taking 2 parameters for the real
and imaginary part

Complex ¢ = atb; //for this to work the
addition operator must be overloaded

The addition without having overloaded operator + could look like
this:

Complex ¢ = a.Add(b);

This piece of code is not as readable as the first example though-
we're dealing with numbers, so doing addition should be natural. (In
contrast to cases when programmers abuse this technique, when the
concept represented by the class is not related to the operator—ike
using + and - to add and remove elements from a data structure. In
this cases operator overloading is a bad idea, creating confusion.)

In order to allow operations like Complex ¢ = a+b, in above code we
overload the “+" operator. The overloading syntax is quite simple,
similar to function overloading, the keyword operator must be
followed by the operator we want to overload:

class Complex
{
public:
Complex (double re,double im)
:real (re),imag (im)
{17
Complex operator+ (const Complexé& other);
Complex operator=(const Complexé& other);
private:
double real;
double imag;
}i
Complex Complex::operator+ (const Complexé&
other)
{
double result real = real + other.real;
double result imaginary = imag + other.imag;
return Complex(result real, result imaginary);

}

The assignment operator can be overloaded similarly. Notice that we
did not have to call any accessor functions in order to get the real
and imaginary parts from the parameter other since the overloaded
operator is a member of the class and has full access to all private
data. Alternatively, we could have defined the addition operator
globally and called a member to do the actual work. In that case,
we'd also have to make the method a friend of the class, or use an
accessor method to get at the private data:

friend Complex operator+ (Complex) ;

Complex operator+ (const Complex &numl, const
Complex &num?2)

{

double result real = numl.real + num?2.real;
double result imaginary = numl.imag + numZ.imag;
return Complex(result real, result imaginary);

}

Why would you do this? when the operator is a class member, the
first object in the expression must be of that particular type. It's as if
you were writing:

Complex a(1, 2);
Complex a(2, 2);
Complex ¢ = a.operator=(b);

when it's a global function, the implicit or user-defined conversion
can allow the operator to act even if the first operand is not exactly
of the same type:

Complex c = 2+b; //1if the integer 2 can

20

be converted by the Complex class, this
expression is valid

By the way, the number of operands to a function is fixed; that is, a
binary operator takes two operands, a unary only one, and you can't
change it. The same is true for the precedence of operators too; for
example the multiplication operator is called before addition. There
are some operators that need the first operand to be assignable,
such as : operator=, operator(), operator[] and operator->, so their
use is restricted just as member functions(non-static), they can't be
overloaded globally. The operator=, operator& and operator,
(sequencing) have already defined meanings by default for all
objects, but their meanings can be changed by overloading or
erased by making them private.

Another intuitive meaning of the “+" operator from the STL string
class which is overloaded to do concatenation:

string prefix ("de");
string word ("composed") ;
string composed = prefixt+word;

Using “+" to concatenate is also allowed in Java, but note that this is
not extensible to other classes, and it's not a user defined behavior.
Almost all operators can be overloaded in C++:

+ - * / A
& \

~ | , = =

++ - << >> == =
&& [

+= -= /= 5= = & =
| = *=

<<= >>= [] () -> —->%
new delete

The only operators that can't be overloaded are the operators for
scope resolution (::), member selection (.), and member selection
through a pointer to a function(.*). Overloading assumes you specify
a behavior for an operator that acts on a user defined type and it
can't be used just with general pointers. The standard behavior of
operators for built-in (primitive) types cannot be changed by
overloading, that is, you can't overload operator+(int,int).

The logic(boolean) operators have by the default a short-circuiting
way of acting in expressions with multiple boolean operations. This
means that the expression:

if(a && b && ¢)
will not evaluate all three operations and will stop after a false one is

found. This behavior does not apply to operators that are
overloaded by the programmer.

21

Even the simplest C++ application, like a "hello world” program, is
using overloaded operators. This is due to the use of this technique
almost everywhere in the standard library (STL). Actually the most
basic operations in C++ are done with overloaded operators, the
IO(input/output) operators are overloaded versions of shift
operators(<<, >>). Their use comes naturally to many beginning
programmers, but their implementation is not straightforward.
However a general format for overloading the input/output
operators must be known by any C++ developer. We will apply this
general form to manage the input/output for our Complex class:

friend ostream &operator<<(ostream &out, Complex
c) //output
{
out<<"real part: "<<c.real<<"\n";
out<<"imag part: "<<c.imag<<"\n";
return out;
}
friend istream &operator>>(istream &in, Complex
&c) //input
{
cout<<"enter real part:\n";
in>>c.real;
cout<<"enter imag part: \n";
in>>c.imag;
return 1in;

Notice the use of the friend keyword in order to access the private
members in the above implementations. The main distinction
between them is that the operator>> may encounter unexpected
errors for incorrect input, which will make it fail sometimes because
we haven't handled the errors correctly. A important trick that can be
seen in this general way of overloading 1O is the returning reference
for istream/ostream which is needed in order to use them in a
recursive manner:

Complex a(2,3);
Complex b(5.3,6);
cout<<a<<b;

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA ¢ 24° MOSTLY
CLEAR

WEDNESDAY, SEPTEMBER 17, 2014 AT 23:07

Inheritance in C++

The ability to use the object-oriented programming is an important
feature of C++. Lesson 12: classes in C++ introduced the idea of the
class; if you have not read it and do not know the basic details of

22

classes, you should read it before continuing this tutorial.

Inheritance is an important feature of classes; in fact, it is integral to
the idea of object oriented programming. Inheritance allows you to
create a hierarchy of classes, with various classes of more specific
natures inheriting the general aspects of more generalized classes. In
this way, it is possible to structure a program starting with abstract
ideas that are then implemented by specific classes. For example,
you might have a class Animal from which class dog and cat inherent
the traits that are general to all animals; at the same time, each of
those classes will have attributes specific to the animal dog or cat.

Inheritance offers many useful features to programmers. The ability,
for example, of a variable of a more general class to function as any
of the more specific classes which inherit from it, called
polymorphism, is handy. For now, we will concentrate on the basic
syntax of inheritance. Polymorphism will be covered in its own
tutorial.

Any class can inherit from any other class, but it is not necessarily
good practice to use inheritance (put it in the bank rather than go on
a vacation). Inheritance should be used when you have a more
general class of objects that describes a set of objects. The features
of every element of that set (of every object that is also of the more
general type) should be reflected in the more general class. This
class is called the base class. base classes usually contain functions
that all the classes inheriting from it, known as derived classes, will
need. base classes should also have all the variables that every
derived class would otherwise contain.

Let us look at an example of how to structure a program with several
classes. Take a program used to simulate the interaction between
types of organisms, trees, birds, bears, and other creatures
coinhabiting a forest. There would likely be several base classes that
would then have derived classes specific to individual animal types.
In fact, if you know anything about biology, you might wish to
structure your classes to take advantage of the biological
classification from Kingdom to species, although it would probably
be overly complex. Instead, you might have base classes for the
animals and the plants. If you wanted to use more base classes (a
class can be both a derived of one class and a base of another), you
might have classes for flying animals and land animals, and perhaps
trees and scrub. Then you would want classes for specific types of
animals: pigeons and vultures, bears and lions, and specific types of
plants: oak and pine, grass and flower. These are unlikely to live
together in the same area, but the idea is essentially there: more
specific classes ought to inherit from less specific classes.

Classes, of course, share data. A derived class has access to most of
the functions and variables of the base class. There are, however,
ways to keep a derived class from accessing some attributes of its

23

base class. The keywords public, protected, and private are used to
control access to information within a class. It is important to
remember that public, protected, and private control information
both for specific instances of classes and for classes as general data
types. Variables and functions designated public are both inheritable
by derived classes and accessible to outside functions and code
when they are elements of a specific instance of a class. Protected
variables are not accessible by functions and code outside the class,
but derived classes inherit these functions and variables as part of
their own class. Private variables are neither accessible outside the
class when it is a specific class nor are available to derived classes.
Private variables are useful when you have variables that make sense
in the context of large idea.

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA e+ 25° MOSTLY
CLEAR

WEDNESDAY, SEPTEMBER 17, 2014 AT 23:19

C++ Inheritance - Syntax

Before beginning this lesson, you should have an understanding of
the idea of inheritance. If you do not, please read lesson 19. This
lesson will consist of an overview of the syntax of inheritance, the use
of the keywords pubilic, private, and protected, and then an example
program following to demonstrate each.

The syntax to denote one class as inheriting from another is simple.
It looks like the following: class Bear : public Animal, in place of
simply the keyword class and then the class name. The “: public
base_class_name" is the essential syntax of inheritance; the function
of this syntax is that the class will contain all public and protected
variables of the base class. Do not confuse the idea of a derived
class having access to data members of a base class and specific
instances of the derived class possessing data. The data members -
variables and functions - possessed by the derived class are specific
to the type of class, not to each individual object of that type. So,
two different Bear objects, while having the same member variables
and functions, may have different information stored in their
variables; furthermore, if there is a class Animal with an object, say
object BigAnimal, of that type, and not of a more specific type
inherited from that class, those two bears will not have access to the
data within BigAnimal. They will simply possess variables and
functions with the same name and of the same type.

A quick example of inheritance:

class Animal

{

24

public:
Animal () ;
~Animal () ;
void eat () ;
void sleep();
void drink () ;

private:
int legs;
int arms;
int age;
}i
//The class Animal contains information and
functions
//related to all animals (at least, all animals
this lesson uses)
class Cat : public Animal
{
public:
int fur color;
void purr () ;
void fish{();
void markTerritory();
}i
//each of the above operations is unique
//to your friendly furry friends
// (or enemies, as the case may be)

A discussion of the keywords public, private, and protected is useful
when discussing inheritance. The three keywords are used to control
access to functions and variables stored within a class.

public:

The most open level of data hiding is public. Anything that is public
is available to all derived classes of a base class, and the public
variables and data for each object of both the base and derived
class is accessible by code outside the class. Functions marked
public are generally those the class uses to give information to and
take information from the outside world; they are typically the
interface with the class. The rest of the class should be hidden from
the user using private or protected data (This hidden nature and the
highly focused nature of classes is known collectively as
encapsulation). The syntax for public is:

public:

Everything following is public until the end of the class or another
data hiding keyword is used.

In general, a well-designed class will have no public fields—
everything should go through the class's functions. Functions that
retrieve variables are known as 'getters' and those that change
values are known as 'setters'. Since the public part of the class is
intended for use by others, it is often sensible to put the public
section at the top of the class.

protected:

25

Variables and functions marked protected are inherited by derived
classes; however, these derived classes hide the data from code
outside of any instance of the object. Keep in mind, even if you have
another object of the same type as your first object, the second
object cannot access a protected variable in the first object. Instead,
the second object will have its own variable with the same name -
but not necessarily the same data. Protected is a useful level of
access control for important aspects to a class that must be passed
on without allowing it to be accessed. The syntax is the same as that
of public. specifically,

protected:

private:

Private is the highest level of data-hiding. Not only are the functions
and variables marked private not accessible by code outside the
specific object in which that data appears, but private variables and
functions are not inherited (in the sense that the derived class cannot
directly access these variables or functions). The level of data
protection afforded by protected is generally more flexible than that
of the private level. On the other hand, if you do not wish derived
classes to access a method, declaring it private is sensible.

private:

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA e+ 25° MOSTLY
CLEAR

26

SUNDAY, JANUARY 4, 2015 AT 14:19

Self-Documenting Code

e programming style

e comments

TIANMUSHAN ROAD, HANGZHOU, ZHEJIANG, CHINA ¢ 19° MOSTLY SUNNY

27

SUNDAY, JANUARY 4, 2015 AT 15:48

Key of Effective Comments

e Repeat of the Code

1. repeat the code that provide any other
information

e Explanation of the Code

1. explain the complex, important and skilful
code

2. when use this comments, check the code if it
is optimized whose complexity can be reduced

e Marker in the Code
1. remind the programmer of something to be done
e Summary of the Code

1. explain dozen of the code to help someone
else to quick go through it

e Description of the Code’s Intent
1. identify the intention of the code

¢ Information That Cannot Possibly Be Expressed by the Code
ltself

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA ¢ 18° MOSTLY
SUNNY

MONDAY, JANUARY 12, 2015 AT 23:18

Comments

ENDLINE COMMENTS

endline comments are not recommended except the following
circumstance.

explain the variable

note about the block of the code

28

e comment should explain the purpose of the paragraph of code

e code itself should try to do some explanations witn a good
program style

e focus the comments on 'why' other than 'how', which means that
explaining the intention of the paragraph code is the purpose of
comment

e delete the useless comments

e use comment to note of some abnormal usage of code that is
helpful for improving the performance

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA ¢ 7° MOSTLY
CLEAR

MONDAY, JANUARY 12, 2015 AT 23:21

Comment Details

e note about the units of the variable (personally add this info into
the name of the variable)

e note about the range of the variable if possible

e explain the meaning of the variable

e note about the intention of this control structure

e note about the nested structure(if...else,while,for,switch...case)

e commenting of routines had better be close to the routines

e one or two sentence to explain the intention of the routines, if
you can not do this,please review the design of this routine

e note about the variables and remind of the input and output
e note about the options of the variables

e note about the limitation of the routines

e about the comment of the class:

29

e explain the design of this class

e remind of the limitation of the class and the usage of the
interface of the class

e explain the interface of the class

e never provide the details of the class

e about the comment of the file:

e comment at the begin of the file

e explain the intention of the file and the summary of the content
e note about the coder information

e about the book paradigm for program documentation: to be

done

HANGZHOU WEST LAKE SCENERY SPOT, HANGZHOU, ZHEJIANG, CHINA ¢ 7° MOSTLY
CLEAR

FRIDAY, JUNE 19, 2015 AT 11:13

icHE
RRTY.. BEHTHZE, EREIZIECHE M, TIEXRRBIEE
TEE. BEEENERAEKRAET ... XBEHLR!

XIXI ROAD, HANGZHOU, ZHEJIANG, CHINA ¢ 26° MOSTLY CLOUDY

SATURDAY, JULY 11, 2015 AT 13:20

BEIREIME2EE

1.8 int BIB9S a M n(0 <= n <= 31), BRE—NRIAR [FizX
IRTLRYER a BYZE n (UABE],

int i=1
i << n;
a & 1i;
a & (1 << n)

2.int Myltoa(char * s) EINBE @ s IAF AT EF N FAVIE AT i
RN B EGRE], H190,A0R s PFEHFERE “1234", MZREHTIR
EEME 1234, RIXsPHFREEHF BAZEsET RN
&

int results = 0;

30

for (int 1i=0; i < strlen(s); ++1) {
result = result*10 + int(s[0] - 0");
}

void * MyMemcpy(void * dest , const void * src,
int n) |

char * pDest = (char *)dest;

char * pSrc = (char *) src;

for(int 1 = 0; i < n; 1 ++) { //BTFNEN
TRIRHASE BAIR

* (pDest + i) = * (pSrc + 1);

}

return dest;

EEH MyMemcpy REZHERPEN ERLIFR FAERIERLER,
R FE MR R 2 2Nl A3t ?

THREELARE, m— e

LAOHE MOUNTAIN, HANGZHOU, ZHEJIANG, CHINA ¢ 25° RAIN SHOWERS

MONDAY, FEBRUARY 8, 2016 AT 00:44

T

RERNAGFZENE—F, BEFRIENE—F, BERIETR
MEMT, OERRERHERTT .

MERRXBEHRE, MROR, IRIRFIF]

BEASKREE, FFOL, ABUE

JIANGYAN, TAIZHOU, JIANGSU, CHINA ¢ -1° MOSTLY CLEAR

Created in Day One

31

